社交网络分析的 R 基础:(五)图的导入与简单分析

December 17, 2023
测试
测试
测试
测试
3 分钟阅读

如何将存储在磁盘上的邻接矩阵输入到 R 程序中,是进行社交网络分析的起点。在前面的章节中已经介绍了基本的数据结构以及代码结构,本章将会面对一个实质性问题,学习如何导入一个图以及计算图的一些属性。

  • 图的文件表示
  • 导入一个图
  • 生成人工网络
  • 图的基本分析

图的文件表示

在计算机中,最常见的两种表示图的基本结构是邻接矩阵邻接表。以最简单的无权无向图为例,邻接矩阵中第 i 行第

j列的元素 a_{ij} 如果等于 1,则表示顶点 i 和顶点 j 之间有边,即邻接矩阵将所有节点之间的关系都表示出来。邻接表则是对顶点 i 建立一个单链表,这个单链表由顶点 i 的所有邻居节点构成,即邻接表只是把存在关系的节点表示出来。

网络上许多公开的数据集更常使用三元组去表示一个图。下面是一个三元组的示例,以第一行的三元组 (1, 2, 1) 为例,它表示有一条从顶点 1 指向顶点 2 的边,并且该边的权重为 1。对于无权图而言,通常会省略三元组中的第三个元素。

1	2	1
1	3	-1
2	3	-1
1	4	-1
3	4	1

💡 提示

公开数据集大多数可以从下面的网站上找到:

1. Stanford Large Network Dataset Collection:http://snap.stanford.edu/data

2. The KONECT Project:http://konect.cc/networks

导入一个图

下面以 Dolphins 网络为例,将其导入到 R 程序中。Dolphins 是一个无权无向的真实网络,描述了生活在新西兰的一个峡湾附近的宽吻海豚社区,其中节点表示海豚,边表示海豚间的社会关系。将数据集下载完成后,打开名为 out 的文件。

% sym unweighted
9	4
10	6
10	7
11	1
......

在读取文件之前还需要对其进行一下修改,可以看到该文件的第一行“% sym unweighted”是由空格分隔的三个元素,R 语言还没有太过智能,在读取到第二行时会因为只有两个元素而报错,因此需要将第一行删除。下面使用 read.table() 将文件读入到 R 程序中:

graph.edges <- read.table(file = "out.dolphins", header = FALSE)

💡 提示

也可以将 out 文件中的制表符(\t)替换成逗号(,),将文件更改为使用逗号分隔的 CSV 文件,并使用 read.csv() 函数读取。

你也许会好奇读入的 graph.edges 到底是什么东西,使用 class() 函数来看看变量的类型:

> class(graph.edges)
[1] "data.frame"

data.frame 似乎前面的章节并没有介绍,受限于研究的方向,这有可能是你唯一一次接触数据框类型,不用管它,下面将读入的数据转换为图:

> library(igraph)
> graph <- graph_from_data_frame(graph.edges, directed = FALSE)

下面画图看看导入的 Dolphins 网络:

> class(graph)
[1] "igraph"
> plot(graph)
image
image

输出一下 Dolphins 网络的规模:

> cat(sprintf("Nodes: %s\nEdges: %s\n", length(V(graph)), length(E(graph))))
Nodes: 62
Edges: 159

这里使用了两个全新的函数 V()E(),其中 V() 是获取图的点集,E() 是获取图的边集,今后的大部分分析是建立在这两个集合之上,这两个函数会伴随你的 R 语言旅程直到结束。

导入的网络可以保存为 R 文件,下次可以直接载入使用,使用同样的方法也可以持久化实验数据。

> save(graph, file = "dolphins.RData")  # 保存 graph 变量
> load(file = "dolphins.RData")  # 导入 RData 文件中存储的变量

生成人工网络

使用人工网络验证算法的有效性也是实验中必不可少的一环,下面介绍几种常见的人工网络结构。

全连接图

树状图

k-正则图

Erdos-Renyi Random

小世界网络

💡 提示

其他人工结构请查看 igraph 文档:https://igraph.org/r/doc

图的基本分析

上文从导入外部网络和生成人工网络两个角度获得了 igraph 图对象,下面将使用 igraph 包中的函数对 Dolphins 网络进行简单的分析。

判断图的连通性

计算图的度

计算图的密度

对图的路径分析

计算图的聚类系数

✏️ 练习

1. 试着在数据集网站中下载其他网络导入到 R 程序中;

2. 试着计算导入网络的平均度;

3. 查找 igraph 文档,试着计算导入网络的同配系数(Assortativity)。

继续阅读

更多来自我们博客的帖子

如何安装 BuddyPress
由 测试 December 17, 2023
经过差不多一年的开发,BuddyPress 这个基于 WordPress Mu 的 SNS 插件正式版终于发布了。BuddyPress...
阅读更多
Filter如何工作
由 测试 December 17, 2023
在 web.xml...
阅读更多
如何理解CGAffineTransform
由 测试 December 17, 2023
CGAffineTransform A structure for holding an affine transformation matrix. ...
阅读更多