干货 | tensorflow模型导出与OpenCV DNN中使用

December 17, 2023
测试
测试
测试
测试
12 分钟阅读

星标或者置顶【OpenCV学堂】 干货文章与技术教程第一时间送达

OpenCV DNN模块

Deep Neural Network - DNN 是OpenCV中的深度神经网络模块,支持基于深度学习模块前馈网络运行、实现图像与视频场景中的

  • 图像分类
  • 对象检测
  • 图像分割

其模型导入与加载的相关API支持以下深度学习框架

  • tensorflow - readNetFromTensorflow
  • caffe - readNetFromCaffe
  • pytorch - readNetFromTorch
  • darknet - readNetFromDarknet

OpenCV3.4.1以上版本支持tensorflow1.11版本以上的对象检测框架(object detetion)模型导出使用,当前支持的模型包括以下:

也就是说通过tensorflow object detection API框架进行迁移学习训练模型,导出预测图之后,可以通过OpenCV3.4.1以上版本提供几个python脚本导出graph配置文件,然后就可以在OpenCV DNN模块中使用tensorflow相关的模型了。感觉十分方便,下面就按照操作走一波!

使用tensorflow模型

根据tensorflow中迁移学习或者下载预训练模型不同,OpenCV DNN 模块提供如下可以使用脚本生成对应的模型配置文件

  • tf_text_graph_ssd.py
  • tf_text_graph_faster_rcnn.py
  • tf_text_graph_mask_rcnn.py

这是因为,OpenCV DNN需要根据text版本的模型描述文件来解析tensorflow的pb文件,实现网络模型加载。 对SSD对象检测模型,生成模型描述文件运行以下命令行即可(在一行执行):

python tf_text_graph_ssd.py --input /path/to/model.pb --config /path/to/example.config --output /path/to/graph.pbtxt

以MobileNet-SSD v2版本为例,首先下载该模型,解压缩以后会发现里面有一个frozen_inference_graph.pb文件,使用tensorflow加载预测图进行预测的代码如下:

import tensorflow as tf
import cv2 as cv

# Read the graph.
model_dir = 'D:/tensorflow/ssd_mobilenet_v2_coco_2018_03_29/frozen_inference_graph.pb'
with tf.gfile.FastGFile(model_dir, 'rb') as f:
    graph_def = tf.GraphDef()
    graph_def.ParseFromString(f.read())

with tf.Session() as sess:
    # Restore session
    sess.graph.as_default()
    tf.import_graph_def(graph_def, name='')

    # Read and preprocess an image.
    img = cv.imread('D:/images/objects.jpg')
    rows = img.shape[0]
    cols = img.shape[1]
    inp = cv.resize(img, (300, 300))
    inp = inp[:, :, [2, 1, 0]]  # BGR2RGB

    # Run the model
    out = sess.run([sess.graph.get_tensor_by_name('num_detections:0'),
                    sess.graph.get_tensor_by_name('detection_scores:0'),
                    sess.graph.get_tensor_by_name('detection_boxes:0'),
                    sess.graph.get_tensor_by_name('detection_classes:0')],
                   feed_dict={'image_tensor:0': inp.reshape(1, inp.shape[0], inp.shape[1], 3)})

    # Visualize detected bounding boxes.
    num_detections = int(out[0][0])
    for i in range(num_detections):
        classId = int(out[3][0][i])
        score = float(out[1][0][i])
        bbox = [float(v) for v in out[2][0][i]]
        if score > 0.3:
            x = bbox[1] * cols
            y = bbox[0] * rows
            right = bbox[3] * cols
            bottom = bbox[2] * rows
            cv.rectangle(img, (int(x), int(y)), (int(right), int(bottom)), (125, 255, 51), thickness=2)

cv.imshow('TensorFlow MobileNet-SSD', img)
cv.waitKey()

运行结果如下:

基于frozen_inference_graph.pb生成graph.pbtxt模型配置文件,命令行运行截图如下:

使用OpenCV DNN模块加载tensorflow模型(frozen_inference_graph.pb与graph.pbtxt),实现预测图使用的代码如下(注意此时不需要依赖tensorflow):

import cv2 as cv

model_path = 'D:/tensorflow/ssd_mobilenet_v2_coco_2018_03_29/frozen_inference_graph.pb'
config_path = 'D:/tensorflow/ssd_mobilenet_v2_coco_2018_03_29/graph.pbtxt'
net = cv.dnn.readNetFromTensorflow(model_path, config_path)

frame = cv.imread('D:/images/objects.jpg')
rows = frame.shape[0]
cols = frame.shape[1]
net.setInput(cv.dnn.blobFromImage(frame, size=(300, 300), swapRB=True, crop=False))
cvOut = net.forward()
print(cvOut)
for detection in cvOut[0,0,:,:]:
    score = float(detection[2])
    if score > 0.3:
        left = detection[3] * cols
        top = detection[4] * rows
        right = detection[5] * cols
        bottom = detection[6] * rows
        cv.rectangle(frame, (int(left), int(top)), (int(right), int(bottom)), (23, 230, 210), thickness=2)

cv.imshow('opencv-dnn-ssd-detect', frame)
cv.waitKey()

运行结果如下(跟tensorflow中的运行结果完全一致,OpenCV DNN果然靠谱):

OpenCV DNN 行人检测 本人尝试了基于tensorflow object detection API使用MobileNet-SSD v2迁移学习实现自定义数据集训练,导出预测图之后,使用OpenCV DNN模块的python脚本生成对象的图配置文件graph.pbtxt,通过OpenCV加载模型使用,实时预测,最后上一张运行结果图:

OpenCV DNN调用代码如下

import cv2 as cv

inference_pb = "D:/pedestrian_data/export_pb/frozen_inference_graph.pb";
graph_text = "D:/pedestrian_data/export_pb/graph.pbtxt";

# load tensorflow model
net = cv.dnn.readNetFromTensorflow(inference_pb, graph_text)
image = cv.imread("D:/python/Pedestrian-Detection/test_images/3600.jpg")
h = image.shape[0]
w = image.shape[1]

# 获得所有层名称与索引
layerNames = net.getLayerNames()
lastLayerId = net.getLayerId(layerNames[-1])
lastLayer = net.getLayer(lastLayerId)
print(lastLayer.type)

# 检测
net.setInput(cv.dnn.blobFromImage(image, size=(300, 300), swapRB=True, crop=False))
cvOut = net.forward()
for detection in cvOut[0,0,:,:]:
    score = float(detection[2])
    if score > 0.5:
        left = detection[3]*w
        top = detection[4]*h
        right = detection[5]*w
        bottom = detection[6]*h

        # 绘制
        cv.rectangle(image, (int(left), int(top)), (int(right), int(bottom)), (0, 255, 0), thickness=2)
        cv.putText(image, "Pedestrian", (int(left), int(top-10)), cv.FONT_HERSHEY_PLAIN, 1.0, (0, 0, 255), 1)

cv.imshow('pedestrain_demo', image)
cv.imwrite("D:/Pedestrian.png", image)
cv.waitKey(0)
cv.destroyAllWindows()

继续阅读

更多来自我们博客的帖子

如何安装 BuddyPress
由 测试 December 17, 2023
经过差不多一年的开发,BuddyPress 这个基于 WordPress Mu 的 SNS 插件正式版终于发布了。BuddyPress...
阅读更多
Filter如何工作
由 测试 December 17, 2023
在 web.xml...
阅读更多
如何理解CGAffineTransform
由 测试 December 17, 2023
CGAffineTransform A structure for holding an affine transformation matrix. ...
阅读更多